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Abstract---Empirical correlation equations for the Nusselt number have been determined that represent an 
extensive body of new and previously published experimental data for the geometry under consideration 
with a level of accuracy that is deemed to be sufficient to render the correlations acceptable for design 
purposes. The equations cover the Darcy, Forchheimer and turbulent regimes of flow. The empirical 
correlation equations are based upon a hypothesis that regards the flow in a porous medium to be the 
superposition of a ‘fine’ component upon a ‘coarse’ component and takes into account the wall effect and 

dispersion. 

INTRODUCTION AND STATEMENT OF 

OBJECTIVE 

THIS PAPER deals with heat transfer by forced con- 
vection from isothermal horizontal cylinders em- 
bedded in infinite liquid-saturated porous media. The 
matrices of the porous media consist of randomly 
packed spheres of uniform diameter and the cylinders 
are subjected to crossflow in the Darcy, Forchheimer 
and turbulent regimes of flow. Several studies relating 
to this topic have been published previously, but every 
such study has dealt with severely limited aspects of 
the problem ; for example, the result of an analytical 
investigation has been reported, but it is restricted to 
Darcy flow and uniform porosity, thereby neglecting 
the so-called ‘wall effect’; for another example, the 
results of an experimental study of the problem have 
appeared in the literature, but the data base of this 
study was too narrow in scope to permit an adequate 
evaluation of the wall effect and the effect of dispersion 
on the rate of heat transfer. 

The objective of the present study was to determine 
empirical correlation equations for the Nusselt num- 
ber that adequately account for the wall effect and 
dispersion for Darcy, Forchheimer and turbulent flow 
for the geometry considered herein. The achievement 
of this objective required the acquisition of new exper- 
imental data with water as the saturating fluid in an 
existing apparatus that had been used previously, and 

- 

7 The subscript DH is a mnemonic device which refers to 
the highest value (H) of the particle Reynolds number for 
which Darcy (Df flow occurs. Similar subscripts will be used 
to indicate the lowest value (L) of the particle Reynolds 
number for which a particular type of flow occurs. 

it also required the construction and utilization of a 
new apparatus with which experimental data could be 
obtained with silicon oil as the saturating fluid. 

REVIEW OF THE LITERATURE 

in order to deal with the problem of forced con- 
vection heat transfer from a horizontal cylinder 
embedded in a porous medium in the presence of 
cross-flow, it is first necessary to have certain infor- 
mation concerning the (isothermal) How of fluids 
through porous media. Fand et uf. [I] have studied 
the three recognized regimes of flow through in~nite 
porous media, namely, the Darcy regime (where 
Red < Re,, = .X3),+ the Forchheimer regime (where 
5 - Re,, Q Rr, < Re,, = 80) and the turbulent 
regime (where Re, 2 Re.,-, = 120) plus the two regions 
of transition between these three regimes. The values 
of the lower and upper bounds of the flow regimes 
have been established using experimental data 
obtained for dimension ratios DC/d 2 1.4, where D, 
represents the diameter of a cylinder used to confine 
the matrix of a porous medium and n is the diameter 
of solid spherical particles constituting the matrix. 

In the Darcy regime, where inertial forces are neg- 
ligible in comparison with viscous forces, the volume 
rate of flow is proportional to the negative of the 
pressure gradient and the following equation applies : 

P’d d -=~ 
pi K (1) 

where P represents the negative of the pressure gradient 
in the direction of flow, u is the volumetric rate of flow 
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NOMENCLATURE 

(‘pi 

(‘, 

c, II 

D 
d 

DC 

Di 

specific heat of the solid particles in a 
porous medium 

c 

(?I 

turbulent coefficients per equation 

diameter of a heated (test) cylinder 
diameter of a spherical particle 
diameter of a cylinder (test section) used 
to contain porous media 
dimensionless measure of dispersion per 
equation (36) 

Gr,, 
Cl., 
II 
K 
k 
k, 

L 

k, 

k 

k;. 

k 
19 

L 

M 
N 
NLl 
P 

AP 

equation (4) 

specific heat of a (saturating) fluid at 
constant pressure 

base for natural logarithms 
modified friction factor, P’clippLp, 
wall modified friction factor, f”,‘M 

gravitational constant: also denotes a 
functional relationship 
Grashof number, gD’bAT/r’ 
Grdshof number, ,gKDflAT!‘v 

heat transfer coefficient 
permeability per equation (2) 
generic symbol for thermal conductivity 
effective thermal conductivity per equation 

(19) 
wall corrected etrective thermal 
conductivity per equation (21) 
thermal conductivity of the fluid saturating 
a porous medium 
thermal conductivity of the solid particles 
in a porous medium 
effective thermal conductivity per equation 

(22) 
wall corrected effective thermal 
conductivity per equation (23) 
length of a cylinder (test section) whose 
diameter is D, 
wall correction factor per equation (10) 
number of data 
Nusselt number, hD/k 
negative of the pressure gradient in the 
direction of flow, - AP/L, 
difference between the outlet and inlet 
pressures of a cylinder (test section) 
containing a porous medium through 
which a fluid is flowing 

A, A’ first Ergun constants per equations (4) 
and (5) 

A,, mean flow area per equation (31) 

‘4, cross sectional area of cylinder (test 
section) used to contain porous media 

A,. A: first Ergun-Reichelt parameters per 
equations (14) and (15) 

B, B’ second Ergun constants per equations 
(7) and (8) 

B,, B:, second Ergun-Reichelt parameters 
per equations (14) and (15) 

Cb,, C,,? Forchheimer coefficients per 

Prandtl number, pc,,ih- 
effective Prandtl number per equation (28) 
hydraulic radius, cd/6(1 --E)M 
cylinder Reynolds number, 

Re,, = uD/v 
particle Reynolds number, Re, = udjv 
modified particle Reynolds number, 
Re; = Red/( 1 -a) 
wall modified Reynolds number, 
RP = Rc:,,‘M 
speLic surface area (surface area per 
unit volume of the particles composing 
a porous medium : for spheres. 
s,, = 6/d) 
temperature 
bulk temperature ; refers to the 
temperature in a fluid outside of a 
thermal boundary layer 
refers to the temperature in a fluid at the 
surface of a heated (test) cylinder 
temperature difference, T,,,, - T,, 
Row velocity in a porous medium 
tesl section core flow velocity 
measured average test section flow 
velocity. 

Greek symbols 
r thermal diffusivity, k,ipc,, 

2, effective thermal diffusivity of a porous 
medium per equation (29) 

; 
a function of E, (1 -c)‘/s’ 
coefficient of volumetric expansion of a 
fluid 

lie a function of c, ( 1 - ~)/e’ 
E porosity 
E,., wall corrected porosity, ~[l +OS(d/D) ‘1 
he KozenyyCarman factor 
i. conductivity ratio, k,iks 

/’ dynamic viscosity of a fluid 
v kinematic viscosity of a fluid, p/i-, 

P density of a fluid 

P> density of the solid particles in a porous 
medium 

(PC.), effective heat capacity of a porous 
medium, ~pc~, + (1 --~)/),c,. 

Subscripts 
cat refers to a calculated value 
exp refers to an experimentally determined 

value. 

Error notation 
E percent error: 

E [(Nucxp 
- Nu,,,)/Nu,,J x 100% 

llld percent mean deviation of error, 

c;“=, IE,I/N. 
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per unit area (sometimes referred to as the ‘Darcian 
speed’ or the ‘velocity’ when the context makes the 
direction clear), p is the dynamic viscosity of the fluid, 
and K is a constant of proportionality called the per- 
meability. The following semi-empirical equation for 
K accurately represents many experimental data : 

where c is the porosity defined as the void fraction of 
the total volume of the porous medium, s,, is the 
specific surface area of the particles composing the 
porous medium. and it is a constant, called the 
Kozeny-Carman factor. For a porous medium com- 
posed of spheres of uniform diameter d, sO = 6/d so 

that 

(3) 

In the Forchheimer regime, inertial effects become 
significant and the following equation applies : 

where C,,d = AaJd and Cp2 = L&U with 
/I. = (1 -&)/e3. A and B are non-dimensional con- 
stants called the first and second Ergun constants for 
Forchheimer flow, respectively. 

It has been found that equation (4) applies to tur- 
bulent flow if the constants therein are replaced as 
follows : 

Fi = C,,d+ CT, Red, 

where C&d = A’m/d and CrZ = B’PJd. 
It will be useful to note that equations (I), (4) and 

(5) may be rewritten, respectively, as follows : 

!.‘=$+I4 
d 

.f' = & + B’, 

wheref’ = P’d/pu”& and Rei = Red/(1 -E) are called 
the modified friction factor and the modified particle 
Reynolds number, respectively. The values of the con- 
stants in equations (6)-(g) were determined exper- 
imentally in ref. [I] to be IC = 5.34, A = 182, B = 1.92, 
A’=225andB’=1.61. 

The transition regions between the Darcy and 
Forchheimer flow are difficult to characterize, because 
they cannot be represented by simple equations such 
as equation (6), (7) or (8). It was shown in ref. [I] 
that this difficulty can be overcome without incurring 
excessive error by assuming that fictitious ‘transition 
Re,‘s’ exist, denoted by ReDF and lie,, (Re,, = 3, 
Re,, = IOO), at which the flow abruptly changes from 

Darcy to Forchheimer and from Forchheimer to 
turbulent flow. 

The eflect of the wall on flow in a porous medium 

The preceding equations demonstrate that the 
porosity, E, is a primary controlling geometrical pa- 
rameter. Now, when a porous medium whose matrix 
is composed of discrete solid particles is confined in a 
duct, the wall of the duct affects the local magnitude 
of the porosity, because the spatial distribution of the 
particles must conform with the shape of the wall. 
This is called the ‘wall effect’. For the case of spherical 
particles conlined in a circular cylinder, to which the 
present study is restricted, the porosity tends toward 
unity upon approach to the cylinder wall. Further. 
Roblee et nl. [2] have observed that the local porosity 
near a confining cylindrical wall varies cyclically in a 
zone extending to three particle diameters from the 
wall into a bed of spheres of uniform diameter. Bene- 
nati and Brosilow [3] have reported that the zone, 
within which oscillation in local porosity occurs, 
extends inward from a cylinder wall a distance of 
approximately five spherical diameters. Within this 
annular ‘zone of the wall’, the average porosity is 
greater than it is without. and hence, in the presence 
of a uniform pressure gradient, the averge velocity of 
the flow is higher within the zone than without. This 
effect is commonly referred to as ‘channeling’. Clearly, 
the annular zone of the wall comprises an increasing 
fraction of the cross-sectional area of the cylinder as 
the dimension ration D,.d decreases. Therefore, the 
influence of the wall upon the flow (via channeling) 
becomes more significant as DJd progressively 
decreases. 

Many investigators have studied the effect of the 
wall. Those particularly relevant to this study are 
Mehta and Hawley [4], Reichelt fS], and Fand and 
Thinakaran [6]. In ref. [4] a hydraulic radius, R,, was 
defined : 

Ed 

RH = 6(1 -a)M’ 

where 

d 
;21= 1+’ _._~_ 

i 1 3 (I-s)D, (10) 

Based on this definition of M, together with the ‘wall 
modified’ parameters, defined by 

and 

Rr,=z, 

equations (6)-(8) can be written as follows : 

,j-=$, 
d 

(12) 
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.f, Re,y = A, + 3, Rc,, (14) 

fiv RP,, = .4:, i B:, Rr, (15) 

The quantity K, is the wall-corrected Koreny-Carman 
factor. A,. B,. and A:, tl<” are rcfcrred to as the first 
and second Ergm-Reich& parameturs for Forch- 
hcimer and turbulent flow, respectively. 

Reichclt [5] determined numerical values of A,* and 
A,% thdt have been superseded by more recent infor- 
mation contained in ref. [6]. It was shown in ref. [6] 

th;it each of the five wall-corrected Ilow parameters 
can be represented by correlation equations having 
the following common form : 

y,, ;I y-ri c fl.0 if’. flhl 

where 3’, represents a wall-corrected parameter, 

,fl Did) = p( D/d) ’ i- q(D/d) ’ + r( D/t/) and CI, p. y and 
r arc numerical correlation constants. The values of 
the correlation constants for all five fow parameters 
are listed in Table 1, 

When a heated horizontal cylinder is subjected to 
a cross-flow of fluid. natural and forced convection 

effccls always occur simultaneously. Therefore, for 
purposes of the present study of,/itrwd conrwtion, it 
is necessary to have a criterion whereby the relative 
importance of natural convection effects can be 
judged. Fand and Kcswani [7] have published results 

of an expcrimcntal investigation of combined natural 
and forced convection heat transfer from a horizontal 
cylinder to water with cross-flow which shows that 

when 

(17) 

the predominant heat transfer mechanism is forced 

convection. Although the investigation in ref. [7] did 
not involve porous media, Fand and Phan [S] later 
found empirical evidence that equation (I 7) is appli- 
cable to a cylinder embedded in a porous medium if 

GY,, is replaced by Grk. It was also determined in ref. 
[7] that the following correlation applies to the case 
of a heated horizontal cylinder in a cross-flow of water 

(no porous medium) when forced convection is prc- 

do~~lin~lnt : 

Nu = (0.255+0.699Rrl:5)Pr”,~“, (18) 

whcrc all of the fluid properties are evaluated at the 
mean tilm temperature. Equation (I Sj was used in ref. 

[Sj to formulate a correlation hypothesis for forccti 
convection heat lrdnsfer for a similar con~~urati~li 
within a porous medium. 

Fand c’f ai. [9] have suggested that the influence ol 
the wall effect on the rate of heat transfer from an 
embedded cylinder can be taken into account by 

replacing c where it appears in the following dctinition 
of the effective thermal c~~nducti~~ity. ii,, of the porous 

medium, 

k,. = c:k, + (I - c:)k,. (19) 

by the so called ‘wall corrected porosity’, x, defined 
as : 

where D is the diameter of the embedded cylinder. 
The wall corrected effective thermal conductivity is 
then : 

k,, = c,k,-+ (I -&)li,. (21) 

In equations (19) and (21). kf and I(, are the thermal 
conductivities of the saturating fluid and the solid 
particles in the porous matrix, respectively. 

Equation (l9), along with other correlations for 
the effective thermal conductivity of porous beds of 
spheres saturated with liquids, have been tested by 
Prasad rt ul. [IOJ against experimental dard. This 
work demonstrates that the accuracy of equation ( 19) 
decreases as the ratio of the thermal conductivities, 
E, = k,Jk,. deviates from unity. An expression that better 
represents experimental data in ref. [IO] for porous 
media with i = 0. I4 (as with silicon oil and glass) and 
/1 = 0.59 (as with water and glass) is 

I<, = k,i ‘I. (22) 

where n = 0.280-0.757 log,,, r.+O.O57 log,,, L. If c, in 
equation (22) is replaced by x,. in order to account 

for the influence of the wall effect on conducti~~ity. :I 
‘wall-corrected k,’ can be defined as follows : 

//:I I<;, = k,i. , (73) 

where IN = 0.280-0.757 log,,, 8:,+0.057 log,,, i. 
Correlation eqLi~~tions applicable to the case of heat 

transfer from an embedded horizontal cylinder in 
cross-flow of water through a porous medium for a 

single value of D/d (D/u’= 3.73) are presented in 
ref. [g]. These correlations were generated using a 
hypothesis consisting of four assumptions, the pri- 

Table 1. Nuinerical values ofconslants in equalion (16) 
-. 
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mary assumption being that flow in this situation can 

be regarded as consisting of two components : a ‘coarse’ 

flow having streamlines analogous to those near a 
heated cylinder immersed in a fluid without a porous 
medium present ; and a superimposed ‘fine’ flow that 
represents the meandering motion of the fluid through 
the interstitial spaces in the porous medium. The 
remaining three assumptions provide the rationale for 

stating that heat transfer from a heated cylinder in a 
porous medium in cross-flow can be described by an 

equation similar to equation (IQ, but multiplied by 
functions containing powers of the Prandtl and Reyn- 
olds numbers. Using such reasoning, it was deter- 
mined that the following equations adequately rep- 
resent forced convection heat transfer from a 
horizontal cylinder embedded in a porous medium 
with cross-flow of water for D/d = 3.73 : 

Nu = 2.17(0.255+0.699 RekL)Pro Ix8 Rr::2’0; 

k = k,, (24) 

for 0.5 < Rr, < 3; 

NM = 2.15(0.255+0.699 Rc::~)P~’ ‘54 Rci ILh; 

k = k,, (25) 

for 3 < Red < 100; 

NM = 1.48(0.255+0.699 ReP,5)Pr0.29’) Re,O I”; 

k = k,, (26) 

for Rr, > 100. 
The thermophysical properties contained in all cor- 

relation equations considered in this paper are evalu- 

ated at the mean film temperature unless specified 
otherwise. 

Hiwt trumfcr : unal~ticd results 

Cheng [I 1] has derived an expression for the local 
heat flux distribution around a heated cylinder embedded 
in a porous medium for Darcy flow by using boundary 
layer approximations to obtain a similarity solution 

to the mathematical equations governing the con- 
servation of mass, momentum, and energy in the fluid 
about the cylinder. Nield and Bejan [12] integrated 
this expression to obtain a result for the average Nus- 
sclt number that is applicable to the geometry of the 

present investigation : 

Nu = 1.015(RrJ Pr,)“‘. (27) 

where Pr, is an effective Prandtl number of the porous 
medium defined as : 

(28) 

Here the effective thermal diffusivity of a porous medium 
tl, is defined as 

with 

(p& = EPC,rf (1 -E)P,G (30) 

In equation (30), ps and c, are the density and the 
specific heat of the solid particles in the porous 

medium, respectively ; and p and cpf are, respectively, 
the density and the specific heat at constant pressure 
of the saturating fluid. The Nusselt number in equa- 

tion (27) is calculated using k,. 

Disprsion 
A phenomenon that occurs in all flows through 

porous media (whether or not there is heat transfer), 

and therefore must be considered in this study, is 
‘dispersion’. The meaning of the term dispersion can 
be explained qualitatively by comparing the one- 

dimensional laminar flow of a fluid through a region 
of space in the presence of, and in the absence of, a 
porous matrix. In the absence of a porous matrix, the 
path of al1 fluid particles are straight, parallel lines; 

whereas, in the presence of a porous matrix, each fluid 
particle follows a tortuous path through the interstices 

of the porous medium. The trajectory of each fluid 
particle in a porous medium is a random process, the 
result of which is an overall transverse migration, or 
‘dispersion’, of the particles away from the straight, 
parallel lines they would have followed in the absence 

of the porous matrix. Dispersion affects the transfer 

of heat because it causes mixing due to the aforc- 
mentioned transverse migration. 

Dispersion is a complex phenomenon. A descrip- 
tion of it as a second order tensor is provided in ref. 
[ 121 in the presence of heat transfer. The components 

of this tensor are, for a given geometry (characterized 

by d in the present case), functions of the Reynolds 
number of the flow, the effective thermal diffusivity, 

the magnitude of velocity of the flow through the 
interstitial spaces in the porous medium and the pore 
size of the porous medium (which, in porous media 
consisting of spheres of uniform diameter is. in turn. 

a function of the particle diameter d). 

EXPERIMENTAL APPARATUS, PROCEDURE 

AND DATA 

Two different apparatuses were used to gather 
experimental data in this investigation. The first of 
these is a high-precision stainless steel water tunnel 
which had been previously used to obtain the data 

reported in ref. [8] and is described therein. This water 
tunnel is equipped with a set of calibrated orifices 
that permit measurement of the volume rate of flow 
through the tunnel. The test section of the water 

tunnel. into which heated cylinders and porous media 
were inserted, was removable and could be incor- 
porated into the second apparatus, which consisted 
of a loop through which silicon oil (2OCs) could be 
pumped at various measured volume rates of flow; 
thus, the second apparatus comprised an ‘oil tunnel’ 
whose test section was identical to that of the afore- 
mentioned water tunnel. The diameter and length of 
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the test section were 0.08660 m and 0.4572 m, respec- of the thin shells were relatively small and in most 
tively. The test section contained a calibrated copper- cases negligible. Uninsulated copper rods having very 
constantan therlnocouple to measure the upstream low electrical resistance. which functioned as electric 
(bulk) temperature of the flowing fluid (water or oil, terminals, were inserted into the shells at both ends 
as the case may be). Limitations in pumping capacity (see Fig. 1) to a depth which insured that electrical 
restricted the oil tunnel to Darcy and Forchheimer heating was confined to only these portions of the 
ROW. shells that were in contact with the porous media. 

Two isothermal electrically heated cylinders having 

different diameters, D, were inserted transversely into 
the test section. The test section was packed with 

porous media whose matrices consisted of uniform 
soda-lime glass spheres having different diameters, d. 
The cylinders were maintained at various tem- 
peratures by controlling the (measured) electric cur- 

rent flowing through them while subjecting them to 

various (measured) fluid velocities. 
The heated cylinders consisted of thin-walled stain- 

less steel tubes, or ‘shells’, which contained three con- 
tiguous close-fitting electrically insulated copper 
inserts as shown in Fig. 1. The cylinders were heated 
by passing direct electric current (order of 100 

amperes) through the stainless steel shells. The copper 
inserts served to equalize the temperature of the inner 
surfaces of the shells. and this inner surface tem- 
perature was indicated by a calibrated thermocouple 

located centrally within the heated specimens as indi- 

cated in Fig. 1. The outer surface temperature of the 
heated specimens, which is needed to calculate the 

heat transfer coefficient, was obtained from the inter- 
nal thermocouple reading by solving the controlling 
different equation for conduction in a radial system 
with uniform heat generation. The inner surfaces of 
the shells were assumed to be adiabatic for purposes 
of these calculations. It was found that the differences 
in temperature between the inner and outer surfaces 

This design renders negligible the axial conducti~~n 
of heat away from the middle of‘ the test specimen. so 
that the measured rate of heat generation in its middle 

portion equals the rate of heat transfer by convection 
at this locus. This experimentally determined rate ol 
convection, together with simultaneous dcter- 
mi~iations of the bulk fluid and specimen surface tcm- 
pcratures, provided the means to calculate the heat 

transfer coei3cient at the middle of the specimen. The 
middle of each specimen was in all cases more than 

five particle diameters away from the confining wall 
of the test section, thcrcby avoiding the ‘zone of the 
wall” associated with the test section. 

The data from ten series of experilnental tests were 

obtained and considered herein. The ranges of the 
expcrimcntal parameters for thcsc ten series are listed 
in Table 2. Each test scrics was designated by the 
letters TS followed by a letter that indicates the fluid 
medium (W for water or 0 for oil), followed by the 

specific test series member (from 1 to IO). The data of 
each test series were divided into subsets. depending 

upon whether they fell into the Darcy, Forchheimcr, 
turbulent or transition ranges of Rc,. These subsets 
were designated by adding the letters D (for Darcy), 
F (for Forchheimer). T (for turbulent), DF (for tran- 
sition from D to F) and FT (for tr~~nsition from F to 
T) to the parent test series symbol; thus. TSW3D 
rcfcrs to the subset of TSW3 that contains data pcr- 

Stainless 
steel shell 

Thermocouple 
passage 

Plastic washer Uninsulated 
copper rod 
(electric terminal) 

DETAIL A I 
0.33560 m- */ I 

-O.O8255m---+ 

Heated portion 
of shell Not to scale 

FIG. I Drawing of test cylinder. 



Correlation equations for heat transfer by forced convection 

Test 
series 

No. of data 

(N) 

TSWI 57 
TSW2 95 
TSW3 41 
TSW4 46 
TSWS 48 
TSW6 41 
TSWI 46 
TSW8 45 
TS09 68 

TSOIO 66 

Table 2. Ranges of experimental parameters 

D d Range of AT 

(mm) (mm) Did (“Cl Range of Re, 

11.450 2.098 5.458 2.9-5.2 0.23-210 
11.450 3.072 3.727 5.6-41.6 0.64-250 
8.509 3.038 2.801 5.1-5.2 0.46-210 

11.450 4.992 2.293 5.1-5.2 0.91-370 
8.509 4.029 2.112 5.1 5.2 0.82-290 

11.450 5.969 1.918 5.1-5.2 1.3450 
8.509 4.992 1.704 5.lL5.2 I .5-390 
8.509 5.969 1.426 5.1-5.2 1.8-430 

11.450 3.038 3.769 6.5-42.3 1.4-24 
8.509 3.038 2.801 2.946.6 1.1-25 

Range of Pr 

@ = k,w) 

4.5-4.9 
2.9-4.9 
4.G4.7 
4.8-5.1 
4.74.8 
4.8-5.1 
4.44.6 
4.9-5.3 
38-54 
34-56 

taining to Darcy flow. All data considered here were 

obtained in the course of the present investigation 
except for TSWZT, which was abstracted from the 

data obtained by Fand and Phan [8]. The reason for 
incorporating TSW2T into the present study was that 
TSWZT covers a wider range of AT for turbulent flow 

(and hence a wider range of PY) than was obtainable 
with the present apparatus. 

As stated in the Introduction, this study purports 

to deal with heat transfer by forced convection from 
cylinders embedded in in&ire porous media. The 
adjective infinite here implies media so large in extent 
that wall effects associated with their confining sur- 
faces do not appreciably affect the convection process. 
It was shown by Fand and Thinakaran [6] that if a 
porous medium whose matrix is composed of uniform 

spheres is confined within a circular cylinder, the 
cylinder diameter must be at least forty times the 
sphere diameter in order to render wall effects neg- 
ligible. It was not possible, for practical reasons, to 
acquire a test section sufficiently large as to satisfy the 
condition DC/d > 40 for use in the present study. The 

highest achievable value was DC/d = 14.5.t Therefore, 
in order to interpret the experimental data obtained 
here in terms of infinite porous media, it was necessary 
to calculate the velocity in the central portion or ‘core’ 
of the test section where the porosity, E, is uninfluenced 
by the confining wall and is identical to the porosity 
in an infinite randomly packed porous medium: 
E = 0.360 for spherical particles. This core velocity, 

designated by u,, was calculated for each experiment 
by a method that is described in what follows. The 
core velocity was then corrected for blockage caused 
by the presence of the heated test specimens in the 
field of flow in order to obtain the final value of the 

velocity, u, used to correlate the heat transfer data. 
Experimentally measured volume rates of flow pro- 

vided information whereby the mean velocities, u,, in 
the test section could be calculated. Corresponding to 
each of these mean velocities, equations (13)-(15) 
were employed to obtain the corresponding wall 
modified friction factors, and thereby the pressure 

t This figure refers to the ‘worst case’. for which 
0, = 0.08660 m and d = 0.00600 m. 

4413 

gradients in the test section. The calculated values 

of the pressure gradients, which are assumed to be 
uniform across the cross-sectional area of the test 

section, A,, were then inserted into equations (6))(8) 
to calculate the flow velocity, u,, in the core of the test 

section, where the porosity is not affected by the wall 
effect. 

The method used to account for blockage is identi- 
cal to that used in refs. [8, 131, and is described in 

Vliet and Leppert [14]. With this method, a mean flow 
area, A,,,, defined as the ratio of the net flow volume 
at the location of the test cylinder to the diameter of 
the test cylinder, is expressed as follows : 

4 
A, = -__4-__ 

D (31) 

The velocity, U, of the fluid corrected for flow blockage 
is then computed from the continuity equations for 
incompressible flow to be : 

The calculation of U, based upon u, is considered to 
be precise, but the blockage correction is approximate 
for several reasons, primary among which is that it 
does not account for the wall effect associated with 
the surface of the heated cylinder. 

It is estimated that the experimental errors in the 
determination of the Nusselt and Reynolds numbers 
do not exceed 5% for any single set of measurements 
included in Table 2. 

EVALUATION OF PREVIOUSLY PUBLISHED 

CORRELATION EQUATIONS 

In this study, four previously published correlation 
equations were tested against relevant experimental 
data listed in Table 2. This was done by computing 
the maximum error and the mean deviation of the 
Nusselt number (see Error Notation in Nomencla- 
ture) within each of the relevant data subsets. In order 
to decide whether a particular correlation equation is 
satisfactory, it was necessary to adopt an appropriate 
criterion. In view of the magnitudes of the exper- 



imental errors discussed above, plus the fact that the 
packing of the test section with the porous media was 
random, the following arbitrary criterion, referred to 
hereafter as the ‘criterion of acceptability’. was 
adopted: a correlation equation that exhibits mean 
deviations of error with respect to each relevant data 

subset not exceeding IO%, and a maximum error for 
any single relevant datum not exceeding 20% is con- 
sidcred to be acceptable. This criterion has been 
adopted in the belief that correlations that satisfy it 

arc sufhcicntly accurate to be used for purposes of 
design. 

The four previously published correlations that 

were evaluated for accuracy are equations (24) and 

(27) for Darcy flow, equation (25) for Forchheimer 
flow, and equation (26) for turbulent flow. The evalu- 

ations were initially performed with the Nusselt and 
Prandtl numbers calculated precisely in accordance 
with the definitions of properties adopted by the 
authors of these equations. Since the initial cvalu- 
ations of these four equations yielded errors c+.r-c&c+ 

the data that were deemed to be excessive, and in an 
effort to reconcile these equations with the data, they 

wcrc re-evaluated by substituting k,, in place of the 
cffectivc thermal conductivities defined by the equa- 
tions’ authors. This substitution was suggested by the 

reported superiority ofk, in representing thermal con- 
ductivity. and by the reported success in accounting 
for the effect of the wall on the rate of heat transfer 
from an embedded cylinder achieved by replacing c 

with E,. With this modification. the errors incurred by 
the previously published equations were still found to 
be excessive. A third and final effort to reconcile the 
published equations with the data was made. this time 
by replacing the effective Prandtl number. Pr,. in equa- 

tion (27) by Pr as defined in equations (24) and (25). 
This final effort resulted in a marked improvement 
but still yielded excessive errors.? It was concluded 

that none 01’ the previously published equations rcp- 
resents the data with sufficient accuracy, because none 

of these equations adequately accounts for the effect 
of the wall and of dispersion. Consequently, a new 
hypothesis that purportedly accounts for the effect of 
the wall and dispersion was formulated, as is discussed 
below. This new hypothesis led to the determination 
of correlation equations that represent the exper- 
imental data with a degree of accuracy consistent with 

the criterion of acceptability. 

A NEW CORRELATION HYPOTHESIS 

An empirical correlation of experimental data is 

usually developed by adopting an appropriate 

TThe mean deviation with respect to at least one of the 
relevant data subsets is greater than 25% in every evaluation 
of equations (24)-(27) described herein. 

f Note that D/d = ReDIRe, for constant density and vis- 
cosity. Re,/Re, may be regarded as the ratio of the scale of 
the coarse flow to that of the fine. 

hypothesis which consists of a mathematical equation 
containing arbitrary constants, and then dctcrmining 
the numerical values of the constants by fitting the 
equation to the experimental data. Since no thcor- 
etical solution to the present problem is available, the 
method followed here to determine a new correlation 
hypothesis was to adopt mathematical forms based on 
previous relevant expcriencc, and then modify thcsc 
forms based upon physical reasoning not hcrctoforc 

applied. 
In order to correlate the cxperimcntal data 

assembled in this study, it was assumed that the Nus- 
sclt number is expressible as the product of two func- 

tions, ,f’, and,/:, the first of which represents the influ- 
cnce of the coarse flow on heat transfer and the second 
that of the fine. This assumption can be cxprcsscd 

symbolically as follows : 

Nu = .f ,.i2. (33) 

The functionj’, was taken to be a generalization of 
equation (27), namely, 

f’) = C, Re:; ’ PI” (34) 

where C, and CI arc constants. The function fi was 
taken to bc 

,f; = C, Prh,q(Di. D/d), (35) 

where C, and b are constants and Di is a dimensionless 
measure of the dispersion in the free stream. The 

function g is a multiplying factor that represents the 
effect of dispersion on the Nusselt number via its 
influence upon Pr. The dimension ratio D/d in ,q 
accounts for the interaction between the fine and 

coarse flows.f The need lo include D/d as an inde- 
pendent variable in 9 becomes clear when one con- 
siders the fact that dispersion in the free stream in a 
porous medium with given d is independent of the 
diameter D of a heated cylinder embedded therein. 
and hence such dispersion cannot affect the Nusselt 
number equally for all D; this implies that the scale 
ratio Djdmust be included as an independent variable 
in the function 9. The reasoning that Icd to a specific 
choice of the form of the function .(/ will now be 

explained. 
The first step in structuring .(/ was to determine a 

suitable measure of dispersion, Di. Now. Di was 

known to be a function of Re, ; however, because of 
the complexity of the process, it was anticipated that 
the determination of an appropriate measure of dis- 
persion that is expressible directly as a function of Rc, 
and also possesses certain other requisite properties 
(to be described presently) would be difficult to 
achieve. It was surmised that a suitable measure of 
dispersion could be more readily determined in terms 
of the pressure gradient in the free stream, via the 
dimensionless friction factor ,f”, which is, in turn. a 
function of Re, per equations (6)-(S). Howcvcr. ,f”. 
by itself, does not represent a suitable choice for Di for 
the following reason : consider a given heated cylinder 
(given D) maintained at a given surface temperature 
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Table 3. Numerical values of constants in equation (37) 

Flow regime c .f d c e 

Darcy 1.248 0.3534 0.05355 0.5 0.5467 
Forth. 0.6647 0.2286 0.2090 0.5 1.417 
Turb. 0.7956 0.06036 0.2248 0.5 1.588 
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and suppose that the cylinder is successively embedded 
in a series of porous media that are saturated by 
the same fluid and are subject to the same crossflow 

velocity (identical Rr,) but have diminishing particle 

sizes (dand Re, + 0). For such a series of experiments 
one should expect the Nusselt number for the cylinder 
to approach a finite limit. Butf’ increases beyond all 

bounds as Red -+ 0, and hence f’ is not a suitable 
measure of dispersion in the function g. However, the 
quantity ,f”ReA is suitable from this point of view, 
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because this quantity remains finite as Re, + 0. Hence, 

the measure of dispersion adopted here is : 

Di = f’ Reh. (36) 

The next step in structuring g was to determine 
a form involving D/d that would account for the 
interaction between the fine and coarse flows. Our 

first impulse was to adopt a simple function, such as 
(D/d)’ ; however, upon reflection, this simple function 

was discarded for the same reason that f’ was dis- 

i 

4 

/ 

7- 

I- 
L- 
X TSWID 

0 TSW?.D 

0 TSW3D 

+ TSW4D 

0 TSWSD 

l TSW6D 

ATsw7Ll 

A TSSWBD 

n l309D 

l TSOIOD 

I-- 
I 1 

2 4 6 8 10 12 14 16 18 20 

N”cd 

FIG. 2. Graph of equation (37) for Darcy flow. 
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Ftc;. 3. Graph of equation (37) for Forchheimer Bow. 

carded as a measure of Di; more explicitly, the func- 
tion (B/d)’ exceeds all bounds as d -+ 0. A power 
function of arctan (B/d)’ was finally adopted because 

arctan (D/ct)‘monotonically approaches a finite upper 
bound (n/2) as d -+ 0. The foregoing reasoning led to 
the adoption of the following form for 9 : 

y = C,(f’ Reijd [arctan (D/d)‘]” 

where CL, c, d and e are constants. Taken together, 
the preceding reasoning and assumptions lead to the 
following correlation hypothesis for Nu : 

I-. 
t More precisely. a series of values of c was explored and 

the value of c that produced the optimum final result was 
adopted. The initial values adopted for the nonlinear 
regression were obtained by applying linear regression to the 
logarithm of equation (37). 

NU = C Rei: Pr ‘(,f“ Rei)” [arctan (D/d)“]’ : 

k = k,.,. (371 

where C = C,C2 andf’= a+h. 

EVALUATION OF THE NEW CORRELATION 

HYPOTHESIS 

The optimum values of the constants in equation 
(37) were obtained by first choosing a value for c and 
then applying the method of nonlinear regression to 
the equation with respect to the relevant data identi- 
fied in Table 2.t The density and viscosity in Re; 
were evaluated at the bulk temperature and all other 
properties were evaluated at the mean film tempera- 
ture. The optimum numerical values of the constants 
so obtained for Darcy, Forchheimer and turbulent 
flow are listed in Table 3. With these constants, equa- 
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FIG. 4. Graph of equation (37) for turbulent flow. 
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tion (37) behaves with respect to the relevant exper- 
imental data as is shown graphically in Figs 2-4. In 
these figures, points that fall on the ‘main diagonal’ 
line through the origin with a slope equal to one 
indicate perfect agreement between Nu,,, and Nu,,~. 
Sample sets of data, selected at random from each 
relevant data subset, are plotted in these figures 
because these sample data are sufficient for the present 
purpose and are not so numerous as to render their 
graphical representations confusing. 

Equation (37) yields a maximum mean deviation of 
6.2% for all relevant data subsets and a maximum 
error of - 14.6% for any single datum. This level of 
accuracy overfulfills the criterion of acceptability, and 
renders equation (37) acceptable. Further, equation 
(37) overfulfills the criterion of acceptability in the 
transition regions (Darcy to Forchheimer and Forch- 
heimer to turbulent) if the ‘points of transition’ 

approach described above (Re,, = 3 and Re,, = 100) 
is adopted. 

CONCLUSION 

It has been demonstrated that equation (37), with 
appropriate constants for Darcy, Forchheimer and 
turbulent flow, represents the entire body of data con- 
sidered in this study with a degree of accuracy that is 
deemed acceptable for design purposes. This empirical 

correlation equation is based upon a hypothesis that 
regards the flow in a porous medium to be the super- 
position of a ‘fine’ component upon a ‘coarse’ com- 
ponent and takes into account the effect of the wall 
and the influence of dispersion upon heat transfer for 
the geometry considered herein. It is anticipated that 
the dimensionless measure of dispersion, Di, deter- 
mined in the course of this study and defined by equa- 



4418 R. M. FANlt et ul. 

tion (361, will be applicable to forced convection heat 7 

(and mass) transfer for geometries other than the 
specific geometry considered here. 
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